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We describe a novel, two-step method for directly computing the conformational free energy of a molecule.
In the first step, a finite set of low-energy conformations is identified, and its contribution to the configuration
integral is evaluated by a straightforward Monte Carlo technique. The method of finding energy minima
incorporates certain features of the global-underestimator method and of a genetic algorithm. In the second
step, the contribution to the configuration integral due to conformations not included in the initial integration
is determined by Metropolis Monte Carlo sampling. Applications to alanine oligopeptides and to three cyclic
urea inhibitors of HIV protease are presented.

Introduction

Many applications in computational chemistry involve com-
puting the relative stability of two different conformational states
of a molecular system. For example, one may wish to determine
the relative stability of two different conformations of a single
molecule, or the standard free energy of binding for a host-
guest system or a protein-ligand complex. Methods for
computing the free energy of binding are particularly important
because of their applicability to computer-aided drug design.
For computer models in which the solvent is treated explicitly,

the most commonly used methods for computing relative free
energies are perturbative methods, such as free energy perturba-
tion (FEP) or multiconfigurational thermodynamic integration
(MCTI).1-6 In these methods, a system is perturbed in small
steps from one state to another and the work of carrying out
each step is summed to yield the worksor the change in free
energysfor the entire process. This is an elegant approach,
but it is often prohibitively slow, for at least two reasons. First,
the explicit treatment of solvent molecules is time-consuming
in general. Second, perturbative methods require equilibration
of the system at each step of the transformation from one state
to another.
The recent successes of implicit solvent models7-12motivate

the development of methods for computing free energy differ-
ences that exploit the computational speed of these approaches.
Perturbative methods such as FEP and MCTI could be used
with implicit solvent models. However, it seems reasonable to
expect greater speed from methods that do not require the system
to be equilibrated for a number of perturbative steps. Several
groups have presented nonperturbative methods and have
obtained promising results.13-18

In the studies of Juneet al.13 and Maginnet al.,14 the value
of Henry’s constant is calculated for alkanes in zeolite pores.
The requisite configuration integrals are computed by Monte
Carlo integration, with structures generated by a configuration
bias technique to improve convergence. Two other methods15-18

calculate free energies by summing over local energy minima.
The method of Lipkowitzet al.15,16 involves summing the
Boltzmann factor of a single conformation at each energy
minimum. This method implicitly assumes that the different
energy minima have exactly the same shape and are separated
by high-energy barriers. The method of Wanget al.17,18includes

more information about the shape of the energy surface, using
a systematic search of conformation space to assign an ap-
proximate width to each energy well. However, the method
approximates all energy minima as harmonic wells separated
by large energy barriers. We are not aware of any efforts to
examine the validity of the approximations in existing methods
based on sums over minima.
We find these methods promising and present a novel

“mining-minima” algorithm for directly computing the config-
uration integral of a molecule as the sum of the contributions
of low-energy states. No assumptions are made concerning the
size and shape of potential energy wells. The method of locating
energy minima is novel and incorporates key features of the
global-underestimator method of Phillipset al.19 and of genetic
algorithms. We also introduce a free energy correction for
conformational states not sampled by the integration over energy
minima. This correction is in the spirit of the predominant-
states method developed in a different context20 and of a recently
described approximation to configuration integrals of small
molecules.21,22 The accuracy of the new method is assessed
by test calculations on a series of molecules of various sizes.

Theory

Conformational Free Energy. We are interested in com-
puting the chemical potential of a molecule in solution. It can
be shown that, in the classical approximation to statistical
thermodynamics, the standard chemical potential at constant
volume equals23,24

Here σext is the symmetry number for external symmetry
operations which leave internal coordinates of the molecule
unchanged,C° is the standard concentration, andZ is the
configuration integral over the internal coordinates of the
molecule. A term that depends upon atomic masses is omitted
here, because it will cancel as soon as the difference is taken
between two chemical potentials for the same molecule. For a
molecule withn atoms,Z is given by
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Here the internal coordinates of the molecule are given in terms
of n - 3 torsion angles{φi}, n - 2 bond angles{θj}, andn -
1 bond lengths{Fk}.25 The integration over bond lengths is
restricted to values ofFk consistent with molecular bonds
remaining intact.26 The Jacobian determinant for the transfor-
mation from Cartesian to internal coordinates,J({θ,F}), does
not depend upon{φi}.14 The configuration integral defined here
includes the symmetry numberσint to account for internal
symmetries due to rotations about classical bonds. For example,
in addition to an external symmetry numberσext of 2, an ethane
molecule has an internal symmetry numberσint of 9 due to
rotations of methyl groups. The overall symmetry of ethane,σ
) σextσint, is therefore 18.27 The energy in the Boltzmann factor
is written as the sum of a vacuum potential energyU and of a
solvent termW that equals the work of transferring the molecule
from vapor phase to solvent in a fixed conformation. Curly
brackets,{ }, indicate a full set of coordinates of the specified
types.

In what follows, it will be assumed that an adequate
approximation to changes in free energy can be obtained by
integrating over only the “soft” internal degrees of freedom,
i.e., the m torsion angles lacking significant double-bond
character. This will be a good approximation so long as the
conformational transformations considered do not significantly
alter the probability distribution of the neglected “hard” degrees
of freedom.24 Furthermore, the “hard” degrees of freedom are
expected to require a quantum, rather than a classical, treatment.
Also, in the present paper, solvent effects are treated only by
simple dielectric screening models. In effect,U + W is replaced
by an energy functionE consisting of the vacuum force field
evaluated with a dielectric constant greater than or equal to 1.
With these simplifications, the configuration integral may be
rewritten as

whereC is a constant that results from integration over the
“hard” degrees of freedom. In what follows, we will speak of
the “conformational free energy”Ator ≡ -RT ln Ztor. Note,
however, that the “mining-minima” method can readily be
generalized to include the neglected degrees of freedom and
more sophisticated solvent models.

Monte Carlo Integration. The conformational free energy,
Ator, can be rewritten as28

whereV ) (2π)m is the volume of conformation space and the
angle brackets represent an unweighted mean of the Boltzmann
factor over conformation space. In what follows, the internal
symmetry numberσint is not included explicitly. Instead,
internal symmetries are accounted for by computing the mean
Boltzmann factor over a subset of the conformation space of
relevant dihedral angles. For example, for rotations about
methyl dihedrals, the mean is computed for the dihedral range
[0, 2π/3], and the requisite change is made to the volume term.
The unweighted average in eq 5 may be evaluated numerically

as an average over a large numberN of randomly generated

conformations of the molecule:

where AMC is the conformational free energy computed by
Monte Carlo (MC) integration andEi is the potential energy
evaluated for conformationi having torsion angles{φi}.
Equation 6 gives a prescription for the direct computation of
conformational free energy. For a given molecule, one ran-
domly generates a large number of conformations spread
uniformly throughout the integration volume, calculates the
average Boltzmann factor, and multiplies by the volume of the
space. Note that this Monte Carlo integration approach differs
from commonly used Monte Carlo algorithms, such as that of
Metropolis et al.,29 which yield a Boltzmann distribution of
conformations, but do not yield an actual configuration integral.
The challenge in this method is achieving adequate sampling

over what may be a very large volume of conformational space.
As demonstrated below, eq 6 can be used to compute converged
numerical values ofAMC for small molecules with few degrees
of torsional freedom. For larger molecules, the convergence
and accuracy of the calculation can be improved by spending
more computational effort in areas of the integration volume
where the value of the Boltzmann factor is large. A method
for doing this is now described.
Predominant States. The predominant-states approxima-

tion20 uses the fact that the largest contributions to the
configuration integral are found in and near energy minima,
because the Boltzmann factors are largest at these minima. The
complete configuration integral is therefore approximated from
the free energy contributionsAj of a finite numberM of potential
energy wellsj. Thus,

where

andAMM is the conformational free energy computed by the
mining-minima algorithm described in detail below. Here,Vj
is the volume of configuration space sampled for energy well
j, andNj is the number of random conformations generated
during MC integration of wellj.
Correction for Other Conformations. For potential energy

landscapes in which the free energy is dominated by a small
number of very low-energy states, the predominant-states
calculation outlined above will provide well-converged free
energy values. However, for systems with many degrees of
freedom, and for those with smooth energy landscapes, the
configuration integral is generally not dominated by a small
number of low-energy states. Instead, an extremely large
volume of configuration space makes a non-negligible contribu-
tion to the overall free energy. As a consequence, the
predominant-states calculation is slow to converge and may
ignore important contributions from relatively high-energy states.
In such cases, the results can be corrected by using a

Metropolis Monte Carlo method in the entire conformational
space to compute the fractional occupancy,fM, of theM states
that have been sampled. Then, as previously shown,20-22 the

Z≈ C Ztor (3)
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1
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∫02π
e-E({φ})/RT∏

i)1

m
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corrected free energyAMM,corr is given by

It is thus possible to correct for conformations not included in
theM energy minima iffM can be computed with sufficient
accuracy.

Methodology

The mining-minima methodology involves locating minimum
energy structures and computingAMM. Then a Metropolis
Monte Carlo simulation is carried out in order to calculate the
fractional occupancy,fM, of the portion of phase space occupied
by theM energy minima. The method is illustrated here for
alanine dipeptide. The example calculations were carried out
using a locally modified version of UHBD,30 the CHARMM
22 parameter set,31 and a constant dielectric,ε ) 25.0. This
particular calculation is used merely for illustrative purposes,
so no attempt has been made to optimize the computations
involved. The results of more challenging cases are presented
in the Results and Discussion section.
Integrating over Energy Minima. Calculation ofAMM is

an iterated, three-step process. First, a new local energy
minimum is identified. Second, the extent of the associated
potential energy (PE) well is determined. Third, the free energy
of the PE well is calculated by Monte Carlo integration. This
procedure is repeated until a convergence criterion is satisfied.
Finding a Local Minimum Structure.The conformation of

the molecule being analyzed is specified by a set ofmdihedral
angles. Minimum energy conformations are identified by a
novel algorithm, termed “anamnestic” because it uses the
memory of previously found minima to speed convergence. The
procedure is as follows.
In the early stages of "anamnestic" sampling, random dihedral

angle values{φi} are generated within the range [-π, π] for
dihedrals with no internal symmetry, and the potential energy
of each conformation is computed. Dihedral angle values are
generated in a restricted range for internally symmetric dihedrals;
for example, methyl dihedral angles are generated in the range
[0, 2π/3]. As sampling proceeds, conformations are generated
with torsion angles that lie in a gradually decreasing range about
the current minimum PE structure, thereby narrowing in on a
local energy minimum. Any time a new conformation is more
stable than the existing energy minimum, the center of the
sampling range is moved to the new energy minimum. This
procedure is motivated by the idea that it makes sense to seek
low-energy structures in regions where relatively low energy
structures have already been found. Once the sampling range
narrows to zero, a local energy minimum{Φi} has been located.
This local minimum is stored for use in later cycles of
anamnestic sampling.
This procedure is related to the global-underestimator method

of Phillipset al.19 The global-underestimator method constructs
a quadratic function that approximates and underlies a set of
previously located local minima. The method assumes that the
global energy minimum lies near the minimum of this quadratic
function. Therefore, a new set of local energy minima is
generated in the vicinity of the minimum of the quadratic
function. A new global estimator is generated from these
minima, and the process iterates to convergence. However, it
is likely that the minimum of the global underestimator will, in
fact, be near the lowest energy structure in the set of local
minima used to define the underestimator. Therefore, in the
present study, the global underestimator is not used. Instead,

the search simply focuses on the lowest energy conformation
found so far.
The present method is enhanced by allowing newly generated

conformations a finite probability of using some torsion angles
from the structures of stored energy minima{Φi}. The idea is
that different local energy minima may be similar to each other.
It therefore makes sense to use previously located minimum
structures as partial solutions when proposing new conforma-
tions. This feature of the present method is similar in spirit to
the possibility of a crossover mutation in a genetic algorithm,32-36

and was found to markedly improve the ability of the present
method to find deep minima quickly. Repeated cycles of
anamnestic sampling will rapidly locate a deep local minimum
with energyEmin,j. For alanine dipeptide, the first minimum
foundsshown as a large filled circle in Figure 1swas the global
minimum atφ ) -160 andψ ) 132. The performance of this
minimizer on more complex systems is discussed below.
Determining the Extent of the PE Well.Given a minimum

PE structure, successivem-dimensional rectangular hypershells
about the minimum are sampled in order to locate low-energy
structures that are nearby in dihedral space. Low-energy
structures within a hypershell are located by anamnestic
sampling, with the following constraints. First, only structures
below a given potential energy cutoffEcutoff relative to the energy
Emin,j at the base of the well are retained. Second, low-energy
structures within a hypershell are not allowed to be closer to
each other than a specified excluded dihedral range. In practice,
this criterion means that two low-energy structures must differ
by more than the excluded range in at least one dihedral angle.
This excluded-range criterion prevents the bottom of the energy
well from being rediscovered repeatedly and allows “mining”
of the PE well for different low-energy structures, thereby
identifying the extent of the well.
Sampling in the hypershells around a given energy minimum

is terminated under two conditions. First, sampling ceases when
no new structures are found with potential energy below a fixed
Emin,j + Ecutoff. The example calculation presented here uses
an energy cutoff of 42 kJ/mol. Alternatively, sampling ceases
when structures in a hypershell descend into a different PE well.
This is implemented as follows. As each hypershell is sampled,
the minimum PE found within the hypershell is retained. As
long as the minimum PE increases with subsequent hypershells,

Figure 1. First PE well of alanine dipeptide. The large, filled circle
indicates the location of the global minimum of alanine dipeptide for
calculations carried out atε ) 25. The other marked points indicate
low-energy structures located as subsequent hypershells are sampled.
An energy cutoff of 42 kJ/mol above the minimum PE was used in
this calculation. The dashed line represents the extent of the PE well.

AMM,corr ) AMM + RT ln(fM) (9)
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the hypershells are considered to be contained within the current
energy well. However, when the minimum PE of a hypershell
is less than that of the previously sampled hypershell, that
hypershell is considered to be associated with a different energy
well and sampling within the current well therefore ceases.
The low-energy structures in the outermost hypershell define

the extent of the PE well. The low-energy structures in
successive hypershells around the global minimum of alanine
dipeptide are shown in Figure 1. The rectangular extent of the
associated PE well for this global minimum is represented by
a dashed line.
Calculating the Free Energy of the PEWell.The free energy

Aj of an individual PE well is computed by Monte Carlo
integration, using eq 8. Random conformations are generated
uniformly within the dihedral range specified by the extent of
the PE well, as shown in Figure 2, and the unweighted average
of the Boltzmann factor is computed for this region of phase
space. The number of random conformationsNj is proportional
to the volume of the well, with a minimum and maximum
number of conformations specified by the user. The quality of
convergence of the Monte Carlo integration within individual
energy wells is examined in the Results and Discussion section.
Finding More Local Energy Minima.The entire procedure

is iterated, with the restriction that trial conformations that fall
within minima that have already been sampled are rejected. This
prevents double-counting of energy minima and forces the
algorithm to continue mining new energy wells. This method
of excluding previously discovered minima can be viewed as a
form of poling.37

The free energy is accumulated according to eq 7 as more
minima are sampled. The process halts when the change of
the cumulative free energy meets a user-specified convergence
criterion. For the present illustration, 11 PE regions were
sampled in order to converge the cumulative free energy of
alanine dipeptide to within 1 ppm. The rectangular extents of
these minima are shown as dashed lines in Figure 3. Because
no attempts have been made to optimize this example calcula-
tion, not all of the PE regions represent unique minimum energy
structures; some are “patches” on the side of a minimum PE
well. This does not diminish the accuracy of the calculation,
however, because the MC integration to computeAj neither
requires nor assumes harmonic energy wells. For ease of coding
and to prevent double-counting of any regions of phase space,

PE wells are separated by narrow gaps, as seen in Figure 3.
The free energy contribution of these portions of phase space
are accounted for by theRT ln(fM) correction described below.
Computing the Fractional Occupancy. A Metropolis

Monte Carlo simulation is performed, generating a Markov chain
of accepted conformations. The step size is adjusted to yield
an acceptance rate of approximately 50%. Each accepted
conformation is checked to determine whether the conformation
is in a region of conformational space corresponding to a
minimum located by the mining-minima procedure just de-
scribed. The fractional occupancy of these minima is computed
and used to correct the predominant-states result according to
eq 9.

Results and Discussion

Convergence and Timings for Oligopeptides and XK263.
Computational Details. The methods detailed above have been
applied to a series of alanine oligopeptides (I , n ) 1-5, 7, 9),
and to XK263 (II ), an inhibitor of HIV-1 protease.38,39 Free
energies were computed both by MC integration over the full
conformational phase space (eq 6) and by the mining-minima
procedure.

Initial coordinates for the alanine oligopeptides were gener-
ated by the program Quanta40 in the all-transconformation. For
XK263, the coordinates of the protein-bound inhibitor were used
directly.38 All calculations used a locally modified version of
UHBD30 and the CHARMM 22 parameter set.31 Oligopeptide
structures were energy minimized briefly with nonbonded
interactions turned off in order to establish a uniform set of
bonds and angles. However, following this protocol for XK263
led to extreme steric overlap of ring substituents. Therefore,

Figure 2. Monte Carlo integration of the first PE well. Dots mark the
location of random conformations generated during MC integration of
the PE well. For clarity, only 10% of the generated conformations are
included in this figure.

Figure 3. All PE wells found during mining minima calculations of
alanine dipeptide. Dashed lines represent the extent of the 11 PE wells
found for alanine dipeptide. The conformation of lowest energy within
each well is identified by a filled circle. Strips between wells guard
against double-counting any regions of phase space. Minimum energy
structures that lie on the edge of dashed boxes represent “wells” which
should more properly be considered “patches” on the sides of
neighboring PE wells (see text).
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the XK263 structure was minimized with electrostatic interac-
tions turned off and van der Waals interactions turned on. MC
integration and the mining-minima procedure were carried out
for rotations of theφ andψ backbone dihedral angles of the
oligopeptides and for the 10 substituent dihedral angles of
XK263. Oligopeptide methyl dihedrals and XK263 ring
dihedrals were not sampled. A minimum of 2.5×103 and a
maximum of 5.0×104 random conformations were generated
during MC integration of individual minima located by the

mining-minima procedure. Free energies for each molecule
were computed with dielectric constants of 1 and 25.
MC Integration of Full Conformational Volume.Free ener-

gies computed by MC integrationAMC are listed in the first
data column of Table 1. A number of general conclusions may
be drawn from analysis of these calculations.
First, the calculations with a dielectric constant of 25 converge

more quickly than the vacuum calculations. The left side of
Figure 4 plots the computed free energy as a function of the
number of MC samples for alanine dipeptide atε ) 25 andε
) 1. Note the difference in energy scales of the graphs. For
alanine dipeptide, theε ) 25 calculation yields good conver-
gence with about half the number of MC samples required for
the ε ) 1 calculation.
The chief reason theε ) 25 calculations converge more

quickly is illustrated in Figure 5. This figure presents two-
dimensional projections of the potential energy landscape of
alanine dipeptide, forε ) 25 in the upper panels and forε ) 1
in the lower panels. The points mark conformations located
during the mining-minima calculations described below. The
energy landscape shown forε ) 25 varies relatively smoothly,
and many conformations have similar energies. Thus, the MC
calculation converges relatively easily. In fact, in the case of
a perfectly flat landscape in which all conformations have the
same energy, a single MC sample would suffice to compute
the exact free energy.
In contrast, theε ) 1 energy landscape is dominated by a

single deep energy well, labeled A in Figure 5. Random
conformations generated during MC integration must repeatedly
sample this deep minimum in order for the computed free energy
to converge. This difficulty is exacerbated as the system gets
larger; theε ) 1 energy landscape for larger oligopeptides is
always dominated by a few deep minima that account for a
very small portion of an ever-larger conformational phase space.
In addition, as might be expected, the free energy of small

systems converges more rapidly than that of large systems. As
shown in Figure 4, the free energy of alanine dipeptide appears
well-converged after fewer than 2.0×106 steps of Monte Carlo
integration. In contrast, even for the relatively smoothε ) 25

TABLE 1: Calculated Free Energies for Alanine
Oligopeptides and XK263a

AMC
[kJ/mol]

AMM
[kJ/mol] M

RT ln(fM)
[kJ/mol]

AMM,corr
[kJ/mol]

Ala2 ε ) 1 -188.51 -188.28 7 -0.20 -188.48
ε ) 25 -10.85 -10.79 7 -0.28 -11.07
∆A -177.66 -177.49 -177.41

Ala3 ε ) 1 -310.52 -310.45 16 -0.24 -310.69
ε ) 25 -22.01 -21.81 26 -0.46 -22.27
∆A -288.51 -288.64 -288.42

Ala4 ε ) 1 -433.85 -433.81 14 -0.22 -434.03
ε ) 25 -34.06 -32.45 36 -1.79 -34.24
∆A -399.79 -401.36 -399.79

Ala5 ε ) 1 -555.07 -556.77 15 -0.90 -557.67
ε ) 25 -46.73 -42.16 70 -5.11 -47.27
∆A -508.34 -514.61 -510.40

Ala6 ε ) 1 -669.73 -677.91 59 -2.56 -680.47
ε ) 25 -58.83 -48.43 11 -12.72 -61.15
∆A -610.90 -629.48 -619.32

Ala8 ε ) 1 -912.64 -940.35 29 -1.59 -941.94
ε ) 25 -83.01 -75.13 242 -13.56 -88.69
∆A -829.63 -865.22 -853.25

Ala10 ε ) 1 -1209.5 22 -9.8 -1219.3
ε ) 25 -94.1 100 -22.7b -116.8
∆A -1115.4 -1102.5

XK263 ε ) 1 85.07 72.88 61 -0.37 72.51
ε ) 25 209.52 201.83 35 -1.46 200.37
∆A 124.45 128.95 127.86

a AMC, free energy computed by MC integration over complete
conformational space;AMM, free energy computed by the mining-
minima procedure;M, number of minima sampled;RT ln(fM), fractional
occupancy correction toAMM; AMM,corr, AMM + RT ln(fM). b The
calculation ofRT ln(fM) for alanine decapeptide has not converged;
this value should therefore be regarded as unreliable.

Figure 4. Convergence plots for Monte Carlo integration of alanine dipeptide and alanine pentapeptide atε ) 1 andε ) 25. Everyφ andψ
dihedral angle was sampled in the range [0, 2π].
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energy landscape, Monte Carlo integration of alanine pentapep-
tide has not converged in 2.0×107 steps. As the size of the
system increases, this problem naturally becomes more severe.
We therefore regard as unreliable the values ofAMC shown in
Table 1 for peptides longer than Ala4. As indicated by the gap
in Table 1, we did not even attempt to computeAMC for alanine
decapeptide, with 18 dihedrals.
Finally, the MC integration method is very poorly suited for

treating systems like XK263, in which large portions of
conformational phase space have high energies due to van der
Waals overlap between the large side chains. For this molecule,
only a small portion of phase space makes a substantial
contribution to the free energy, even when a high dielectric
constant is used. This results in slow convergence of the MC
integration, as illustrated in Figure 6.
“Mining-Minima” Results. The second and third columns

of Table 1 list, respectively, the free energies computed by the
mining-minima procedure,AMM, and the number of minima

sampled,M, for the oligopeptides and XK263. In all cases,
minima were accumulated until the energies were converged
to 1 ppm. An energy cutoffEcutoff of 167 kJ/mol above the
energy minimumEmin,j was used for sampling hypershells in
each PE well. Four conclusions may be drawn from analysis
of these calculations.

First, in contrast to MC integration, the mining-minima
method converges more quickly for the sharply peakedε ) 1
potential energy surface than for the smoothε ) 25 surface. In
Figure 7, the cumulative free energy is plotted against the
number of minima sampled. The free energy of alanine
dipeptide is again shown on the left, with that of alanine
pentapeptide on the right. The deep minimum labeled A in
Figure 5 makes a dominant contribution to the free energy of
alanine dipeptide. This energy minimum is located very early
in the mining-minima process, and once it is sampled, additional
minima make only small additional contributions toAMM. On
the other hand, forε ) 25, the various minima are similar in
energy, so a larger number must be sampled in order for
convergence to be achieved. It is worth pointing out that the
free energy yielded by the mining-minima method is an upper
bound to the true result, barring numerical problems. As the
MC integration within a single well progresses, the computed
value ofAj can fluctuate. Convergence of the MC integration
within individual wells is examined in more detail below.
However, as the free energies of more minima are accumulated
according to eq 7, the computed conformational free energy
AMM falls monotonically.

For small systems, free energies computed by the mining-
minima method agree extremely well with free energies
computed by MC integration, particularly for the sharply peaked
ε ) 1 potential energy surface. For systems as large as alanine
tetrapeptideswith six dihedral degrees of freedomsthe value
of ∆A ≡ Aε)1 - Aε)25 is essentially identical for both MC
integration and the mining-minima calculation. The discrep-
ancies found for larger molecules probably result from the poor
convergence of the brute force MC calculations that yieldAMC.

Figure 5. Potential energy surfaces of alanine dipeptide. Points mark structures located during mining-minima calculations atε ) 1 andε ) 25.
The graphs on the left project all points onto theφ axis, and the graphs on the right project all points onto theψ axis. See text for descriptions of
labeled minima.

Figure 6. Convergence plots for Monte Carlo integration of XK263.
Integrals range over [0,π] for phenyl dihedrals and [0, 2π] for all other
substituent dihedral angles.

1614 J. Phys. Chem. A, Vol. 101, No. 8, 1997 Head et al.



Second, as was the case for MC integration, convergence is
slower for larger systems. For example, obtaining converged
results atε ) 25 for alanine pentapeptide requires sampling 10
times as many minima as for alanine dipeptide (see Figure 7).
In general, as the system size increases, more minima must be
sampled in order to reach the same level of convergence.
However, an interesting exception to this general trend is

illustrated in Figure 8. This figure plots the number of minima
required to converge theε ) 1 free energies to less than 1 ppm,
as a function of the number of peptide units. Alanine hexapep-
tide requires roughly twice as many minima for convergence
as predicted by interpolation between alanine pentapeptide and
alanine octapeptide. The explanation is as follows. For these
molecules atε ) 1, the CHARMM potential energy surfaces
of oligopeptides up to 5 units long are dominated by structures
with repeating, ringlike C7eq units. For longer oligopeptides,
R -helical structures predominate. The hexapeptide and, to a
lesser extent, the octapeptide fall in the transition between these
two regimes. As a consequence, many largelyR -helical
conformations are similar in energy to conformations with
repeating C7eq units. Therefore, all these minima must be
sampled to achieve convergence. Remarkably, this change in
preferred conformation is consistent with results of more
elaborate FEP calculations using explicit solvent molecules.41

Third, the mining-minima procedure tends to sample minima
in order of increasing potential energy. This reflects the success
of the technique used for finding energy minima and the fact

that each minimum can be sampled only once. This result is
illustrated for alanine pentapeptide atε) 25 in the lower portion
of Figure 9.
However, increasing potential energy does not necessarily

imply increasingfreeenergy, as illustrated by comparison with
the upper portion of Figure 9. For example, the second and
third minima found for alanine pentapeptide have virtually
identical potential energiesEmin,j, but their free energiesAj differ
by about 4 kJ/mol, as shown in Table 2. In addition, the
conformations at the two energy minima are quite similar. The
chief conformational difference is thatψ4 changes from-60°
to 110°. The difference in free energies can be rationalized by

Figure 7. Convergence plots for mining-minima calculations of alanine dipeptide and alanine pentapeptide.

Figure 8. Number of minima required to convergeAMM of alanine
oligopeptides to 1 ppm, withε ) 1.

Figure 9. Sequence of energy wells of alanine pentapeptide found by
the mining-minima method atε ) 25. Crosses markEmin,j and filled
squares markAj of each energy well.

TABLE 2: Comparison of Second and Third Minima Found
for Alanine Pentapeptide at E ) 25a

Emin,j [kJ/mol]
Aj [kJ/mol]

minimum 2
-53.71
-32.49

minimum 3
-53.72
-36.46

φ1 -76° -77°
ψ1 -42° -33°
φ2 -76° -74°
ψ2 -21° -34°
φ3 -72° -70°
ψ3 -34° -35°
φ4 -163° -165°
ψ4 -59° -110°

a Emin,j, minimum potential energy within well;Aj, free energy of
well.
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reference to the potential energy surfaces of alanine dipeptide
(Figure 5). Energy minimum 3 of the pentapeptide hasψ4 ≈
110, corresponding to the broad minimum labeled C, and
therefore has a relatively low free energy. In contrast, energy
minimum 2 corresponds to the narrower well withψ ≈ -60,
labeled B.
It is of interest to examine the correlation between potential

energy and free energy. As shown in Figure 10, there is a
significant correlation betweenEmin,j andAj for the energy wells
at ε ) 25 for alanine pentapeptide. The slope of the least
squares fit is 0.47, implying that asEmin,j rises, the width of the
energy well increases. However, the correlation betweenEmin,j
andAj is far from perfect. Similar correlations are seen for all
of the systems studied here (data not shown). This result
highlights the importance of examining not only the depth of
each PE well but also its shape and breadth.
Fourth, the mining-minima procedure is ideally suited to

systems like XK263. Precisely the same features that make
this system a challenge for the simple MC integration method
make it appropriate for the mining-minima procedure. The
procedure quickly locates and samples the narrow energy wells,
yielding excellent convergence, as seen in Figure 11.
MC Integration of IndiVidual Minima. Convergence plots

are shown in Figure 12 for MC integrals within the 15 energy
wells located for alanine pentapeptide atε ) 1 (see previous
subsection). Within each well, 5×104 random conformations
were generated. The convergence is excellent for most of the
wells. It is clear that restricting the limits of integration to areas
of low energy drastically improves convergence of the calcula-
tion, compared with the MC integrals in the entire conforma-
tional space (see Figure 4).

On the other hand, not all of the free energies are perfectly
converged; see especially the top plot of Figure 12. In the
present case, this lack of convergence has little effect upon the
final results, because it occurs in a high-energy well that
contributes little to the configuration integral. It should be
possible to minimize such convergence problems by applying
an appropriate convergence criterion. Although this would
require additional computer time for some energy wells, it
should speed the calculations for the more common case in
which the integral converges rapidly (see Figure 12).
Correction for Other Conformations by Fractional Oc-

cupancy.A weakness of the mining-minima procedure is that,
by itself, it neglects free energy contributions from conforma-
tions that do not lie in the deepest energy minima. In a system
with many degrees of freedom, these other conformations can
contribute significantly. Their contribution is assessed here
through the use of eq 9, and the results are listed in Table 1.
As shown, even systems as small as alanine dipeptide have

a noticeable contribution fromRT ln(fM). As one would expect,
in general the correction is larger forε ) 25, resulting from
smoother pseudosolvent landscapes with many roughly equiva-
lent minima. As system size becomes large, it again becomes
difficult to converge the Metropolis Monte Carlo calculations
of fM (results not shown). It is likely that a more efficient MC
algorithm, such as a configuration-biased method,42-46will yield
improved convergence.
CPU Timings. Approximate CPU timings, in minutes, are

listed in Table 3. The CPU times for the MC integration method

Figure 10. Free energyAj versus potential energyEmin,j for energy
wells of alanine pentapeptide atε ) 25. This scatter plot graphs the
energies shown in Figure 9. The straight line is a least squares fit to
the data, with a correlation coefficient of 0.70.

Figure 11. Convergence plots for mining-minima calculations of
XK263 at ε ) 1 andε ) 25.

Figure 12. Convergence plots for Monte Carlo integration within
individual PE wells of alanine pentapeptide atε ) 25.

TABLE 3: Approximate CPU Times for Free Energy
Calculations of Alanine Oligopeptides and XK263a

AMC AMM RT ln(f)

N CPU [min] M CPU [min] CPU [min]

Ala2 ε ) 1 2.0× 106 55 7 2.0 1.5
ε ) 25 1.0× 106 27 7 2.6 1.5

Ala3 ε ) 1 1.0× 107 480 16 110 5.6
ε ) 25 1.0× 107 540 26 190 11

Ala4 ε ) 1 3.5× 107 2700 14 150 27
ε ) 25 2.0× 107 1700 36 470 35

Ala5 ε ) 1 2.0× 107 2200 15 370 170
ε ) 25 2.0× 107 2300 70 1100 100

Ala6 ε ) 1 1.0× 107 2400 59 1200 270
ε ) 25 1.0× 107 1700 11 240 190

XK263 ε ) 1 1.0× 107 3000 61 1300 240
ε ) 25 1.0× 107 3000 35 1700 700

a N, number of randomly sampled conformations; CPU times
measured on an SGI R4400 Indigo2 workstation. See Table 1 for other
symbols.
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are significantly longer than those for the mining-minima
procedure, even though the results of the MC integration method
are not reliably converged. Moreover, the mining-minima
method has not yet been optimized for speed.
Conformational Preferences of Substituted Cyclic Ureas.

The cyclic urea inhibitors of HIV-1 protease possess four
different stable ring conformations. The mining-minima method
is used here to assess the relative stability of these conformations
for three cyclic ureas with different substituents.

Computational Details.Four stable ring structures of 5,6-
dihydroxy cyclic urea were identified by high-temperature
molecular dynamics followed by energy minimization. The ring
may adopt either pseudoboat or pseudochair conformations. In
either case, the two hydroxy substituents on the ring may be
either axial or equatorial to the ring. There are thus four distinct
ring conformations. These will be referred to according to ring
conformation and hydroxyl orientation,e.g., the boat-axial
structure.
Benzyl and ethyl substituents were built onto each of the four

stable cyclic urea structures using Quanta.40 The 12 resulting
structures were minimized briefly to relieve bad steric contacts
and to optimize bonds and angles. The mining-minima
procedure was used to sample over the dihedral angles of the
substituents of the ring and thus to compute the conformational
free energy of each stable ring structure. Methyl dihedrals were
sampled over the range [0, 2π/3]; phenyl dihedrals were sampled
over the range [0,π], and all other substituent dihedrals were
sampled over the range [-π, π]. Cumulative free energies for
each molecule were converged to 0.1 ppm. All calculations
used the CHARMM 22 parameter set31 and a distance-dependent
dielectric,ε ) 4r.
The results of these calculations are listed in Table 4. The

reported free energy values includeRT ln(fM) corrections.
However, these corrections were small: less than 0.4 kJ/mol

for the dihydroxy and dibenzyl, dihydroxy substituted ureas and
less than 2.4 kJ/mol for the dibenzyl, diethyl, dihydroxy
substituted urea.
5,6-Dihydroxy Cyclic Urea.The most stable conformation

of the cyclic urea core is predicted to be the pseudoboat ring
conformation in which the dihydroxy substituents are in an axial
orientation. Ten energy wells sufficed to converge the free
energy to within 0.1 ppm.
4,7-Dibenzyl-5,6-dihydroxy Cyclic Urea.Dibenzyl substitu-

tion at the 4,7 positions favors the chair-axial conformation of
the ring. This conformation positions the dibenzyl substituents
away from the cyclic urea core. Part of the reason this
conformation is stable is that its minimum PE is lower than
those of the other three ring conformations. In addition, the
chair-axial conformation has a large number of PE wells of
similar free energy: 65 minima were required to converge the
free energy of this conformation, while fewer than 30 minima
were required to converge the free energies of the less stable
ring conformations.
4,7-Dibenzyl-1,3-diethyl-5,6-dihydroxy Cyclic Urea.Addition

of diethyl substituents on the cyclic urea nitrogens favors the
chair-equatorial conformation. Sixty-five minima were required
to converge the cumulative free energy to 0.1 ppm. In contrast
to 4,7-dibenzyl substitution, the most stable ring conformation
in this case has fewer PE wells of similar free energy than do
the less stable ring conformations. Favorable van der Waals
interactions between benzyl and ethyl substituents may help to
stabilize the chair-equatorial ring conformation.
Implications. The conformational preferences presented here

are consistent with experimental analyses of these and related
molecules by X-ray crystallography and NMR spectroscopy.47,48

This could be coincidental, given that the present calculations
treat environmental effects crudely. Nonetheless, the results
are encouraging.
This problem would be challenging for perturbative methods

of computing free energies, because it would be necessary to
force the ring in steps from one stable conformation to another,
equilibrating the system at each step. This could be difficult,
due to the high-energy barriers between stable conformations
of the ring. With the present method, it is necessary only to
compute the free energies of the four stable conformations.

Conclusions

The mining-minima procedure described here allows direct
computation of conformational free energy for systems with
modest numbers of torsional degrees of freedom. No assump-
tions are made concerning the number or nature of low-energy
states. In particular, it is not necessary to assume that the energy

TABLE 4: Calculated Free Energies for Substituted Cyclic Ureasa

a See Table 1 for symbols.
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wells are harmonic or that they all have the same shape. The
new method is particularly useful for systems whose configu-
ration integrals are dominated by a few low-energy conforma-
tions. However, the method may still be used for systems that
do not meet this criterion because an additional Monte Carlo
calculation can be used to correct for conformations not included
in the sum over energy minima.
The method yields excellent convergence and good agreement

with experiment when applied to a series of druglike, synthetic
ligands of HIV-1 protease. It is anticipated that this procedure
will also be useful in computing the free energy of binding of
small molecules with synthetic hosts and perhaps with protein
receptors. This application will require sampling over the
external position and orientation of a molecule in addition to
its internal degrees of freedom. The procedure is currently being
adapted for this purpose.
The free energy calculations presented here utilize the

CHARMM parameter set and a simple treatment of solvent
effects. However, the method can be used with any fast energy
and solvation model. Moreover, the basic steps of the
algorithmsfinding and integrating over new minima and
computing the fractional occupancy of the minima that have
been sampledscould be implemented with a variety of other
algorithms. For example, distance-geometry methods could be
used to rapidly locate conformations that might be in or near
important energy minima. Also, as noted above, the Metropolis
Monte Carlo method probably is not optimal for computingfM.
Finally, an alternative formulation of the mining-minima ap-
proach, not presented here, is readily parallelizable. This should
permit even faster free energy calculations on parallel super-
computers.
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